Cognitive, Computational and Social Neurosciences

Neural Bases of Consciousness

The course will provide an introduction to fundamental concepts and current experimental approaches related to the study of the functional and anatomical basis of consciousness in humans. In particular, the course deals with the following topics:

a) Definition of consciousness and identification of its fundamental properties;
b) The neuroanatomical basis of consciousness;
c) Altered states of consciousness: sleep, anesthesia, seizures, coma and related conditions;
d) Main experimental paradigms and methodological approaches to the study of consciousness;

Networks

The course is structured into three modules: the first one will cover advanced topics in complex network theory, whereas, the second one will focus on economic and financial networks, dealing with both theory and applications.

Module 1: Advanced Theory of Complex Networks
Lecture 1 Models of Evolving Networks
Lecture 2 Fitness & Relevance models
Lecture 3 The Master Equations approach
Lecture 4 Percolation
Lecture 5 Epidemic Models on Networks
Lecture 6 Advanced Topological Properties
Lecture 7 Complex Networks Randomization

Matrix Algebra

This course is aimed to review the basic concepts of linear algebra:

1. Systems of linear equations: solution by Gaussian elimination, PA=LU factorization, Gauss-Jordan method.
2. Vector spaces and subspaces, the four fundamental subspaces, and the fundamental theorem of linear algebra.
3. Determinant and eigenvalues, symmetric matrices, spectral theorem, quadratic forms.
4. Cayley-Hamilton theorem, functions of matrices, and application of linear algebra to dynamical linear systems.
5. Iterative methods for systems of linear equations.

Machine Learning and Pattern Recognition

Basics of pattern recognition and machine learning and real world applications in imaging, internet, finance. Similarities and differences. Decision theory, ROC curves, Likelihood tests. Linear and quadratic discriminants. Template based recognition and feature detection/extraction. Supervised learning (Support vector machines, Logistic regression, Bayesian). Unsupervised learning (clustering methods, EM, PCA, ICA). Current trends in Machine Learning. Prerequisites: Probability and basic random processes, linear algebra, basic computer programming, numerical methods.

Leading Themes in Neuroscience

Every year, we will have a world-recognized neuroscientist to provide a masterclass on a specific topic related to the CCNS track.

Game Theory

Mechanism Design. Revelation principle, Dominance and Nash Implementation. Strategic and Axiomatic Bargaining. Asymmetric Information and Optimal Contracts. Moral Hazard and Adverse Selection models. Signaling and Screening Models. Applications. Static games of complete information: definition of a game; normal form representation; strongly and weakly dominated strategies; Nash Equilibrium (NE); mixed strategy equilibrium. Applications of NE and introduction to market competition; Cournot competition; Bertrand competition; externalities; public goods.